
CS 520 Advanced Analysis of Algorithms Fall 2014 – Eschen 1 

Course Summary 

Text: [CR] Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms, 3rd edition, 2009.  

Assume 3rd edition unless otherwise noted. 

 

Course Overview 

Syllabus 

Policies 

 

Introduction to Algorithm Analysis 

CR Chapter 1, Sections 2.1, 2.2 

Class notes: Counting Constant-time Operations; Best, Worst Case and Expected; Logarithm 

Facts; In-place Insertion Sort 

Abstract Problems 

Problem Instances 

Size of an instance (size of the input to an algorithm) 

 

Algorithm specification:  

 Input 

 Output 

 Methods (step-by-step procedures) 

 Data structures 

 

Time required by an algorithm as a function of instance size. 

What is constant time?  Time that is independent of the instance size (e.g., single cpu, arithmetic 

logic unit, or memory access operations). 

Counting constant-time steps (operations or groups of operations that require constant time) 

Time/Space tradeoff 

Analyzing proposed algorithms for their time efficiency drives algorithm design. 

Data structures support efficient algorithms. 

 

Implicit constants: Depend on computer speed, which varies from computer to computer. Want 

analyses that give the relative efficiency of algorithms (that is, independent of the implicit 

constants.  We ignore implicit constants. 

Explicit constants: Result of algorithm design – not the speed of the computer used.  When 

designing an algorithm we want to be aware of and control explicit constants (algorithms with 

very large explicit constants can be inefficient and we don’t want to ignore such constants as 

they can’t be diminished by faster hardware). 

Example of explicit constant:  Imagine an algorithm with input consisting of n numbers.  The 

first step is to divide the input into n/5 groups of size 5.  Then each group is sorted.  The 

optimal worst-case time (c.f. below) required to sort k numbers when there is no restrictions on 

the numbers is cklgk (where c is an implicit constant).  So the sorting takes time overall = 

n/5c5lg5 ≤ (n/5)c5lg5 = (clg5)n.  The constant lg5 is an explicit constant; it is a result of the 

algorithm design (we could have chosen a different size for the groups). 

 

The running time of an algorithm can vary with input.  We analyze algorithms in three ways: 

worst case time, best case time, expected time.  An upper bound on the worst case is an upper 

bound for all cases.  A lower bound on the best case is a lower bound on all cases.   
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Course Summary 

Growth Rate of Functions and Asymptotic Order Notation 

CR Section 3.1 

Class notes: Growth Rates; Asymptotic Order Notation; Logarithm Facts; In-place Insertion 

Sort; Big-Oh, Big-Omega Examples; Limits and Order Notation; Little-oh, Little-omega and 

Limits; L’Hospital’s Rule 

Algorithm efficiency:  

Polynomial versus exponential time/space 

 Tractable = polynomial 

Intractable = exponential 

Quasipolynomial time 

 

Asymptotic efficiency: Concerned with how the running time increases as the instance size 

increases without bound. 

Discrete definitions of , , , ,  

Difference between  and ; difference between  and  

Relationship of the limits to order notation: lim f(x)/g(x) as x →  

Difference between the discrete definition of  and when lim f(x)/g(x) as x →  = constant > 0 

Proving/disproving growth rate relations between functions 

 

Divide and Conquer Approach and Solving Recurrences 

CR Sec 2.3, Chapter 4 

Class notes: Divide and Conquer Recurrences; MergeSort Recursion Tree; Recursion Tree 

Example; Baby Master Theorem 

MergeSort – an example of a divide and conquer algorithm 

Substitution method  

Iteration Method (Expand-Guess-Verify method) 

Recursion tree method 

Master theorems 

 

Medians and Order Statistics.  Candidate Selection Approach 

CR Sec 9.1, 9.3 

Class notes: Candidate Selection; Big5 Algorithm; Big5 Algorithm Hopcroft/Ullman; Big5 

Algorithm Example 

Establishing upper bounds and lower bounds on the required computational time to solve a 

problem.  The problem of lower bounding; restricting the type of operations used; count number 

basic operations. 

Finding the maximum and minimum of n numbers using  3floor(n/2) comparisons. 

Finding the 1st and 2nd smallest of n number using n+ceiling(lgn)-2 comparisons. 

Finding the kth order statistic in a set of n numbers.  Methods: sort in O(nlgn) time; there is an 

O(n+klgn) time algorithm using a Binary Heap; Big-5 Algorithm has worst case running time 

O(n). 
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Course Summary 

Priority Queues [Data Structure Tuesday 1, Oct 7] 

CR Section 6 

Class notes: Priority Queues and Min-Heaps 

The abstract data type Priority Queue: Note difference in CR definition from lecture: they 

include Increase_Key/Decrease_Key in definition of a priority queue (I do not). 

Selection Sort and Priority-Queue Sort 

Binary Heaps 

HeapSort 

 

Elementary Data Structures [Data Structure Tuesday 2, Oct 14] 

CR Chapter 10 

Stacks and queues, linked lists, implementing pointers and objects, representing rooted trees. 

 

Representations of Graphs 

CR Section 22.1 (Representations of graphs) 

Class notes: Graph Representations 

Adjacency Matrix, Adjacency Lists 

Efficiency of adjacency testing, finding neighbor sets, and graph traversal 

Space considerations 

Hopcroft-Ullman “trick” to have both adjacency matrix and adjacency lists in linear time 

 

Greedy Algorithms and Minimum Spanning Trees 

CR Chapter 23 

Generic MST Algorithm: generic greedy approach 

Greedy choice property: a greedy choice C must have the property that C along with all previous 

greedy choices is part of an optimal solution. 

Proving the greedy choice property: cut-and-paste 

Kruskal and Prim algorithms: implementations of the Generic MST Algorithm 

 

Disjoint-sets Data Structures [Data Structure Tuesday 3, Nov 4] 

CR Chapter 21 

Disjoint-sets operations 

Linked-list representation of disjoint-sets 

Trade-off between the time for Union and Find-Set operations 

Worst case, best case analysis 

Disjoint-set forest 

 

Standard Notations and Common Functions 

CR Section 3.2 

Prerequisite knowledge (from a first course in Analysis of Algorithms and Discrete 

Mathematics) 

 

The following Appendices are prerequisite knowledge and good reference material. 

Summations 

CR Appendix A 
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Course Summary 

You may find Section A.2 to be new material. 

Sets, Relations, Functions, Graphs, Trees 

CR Appendix B 

Counting and Probability 

CR Appendix C 

Matrices 

CR Appendix D 

 

 


